ИЗМЕНЧИВОСТЬ КОЛИЧЕСТВЕННЫХ ПРИЗНАКОВ ЛИНЕЙНЫХ ГИБРИДОВ КОНОПЛИ Ф₁−Ф₃ СРЕДНЕРУССКОГО И ЮЖНОГО ЭКОЛОГО-ГЕОГРАФИЧЕСКИХ ТИПОВ

Мищенко Сергей Владимирович, кандидат сельскохозяйственных наук, старший научный сотрудник отдела селекции и семеноводства конопли
Лайко Ирина Михайловна, доктор сельскохозяйственных наук, заведующая отделом селекции и семеноводства конопли
Опытная станция лубяных культур Института сельского хозяйства Северо-Востока НААН
Украина, 41400, Сумская обл., г. Глухов, ул. Терещенко, 45, тел. +38 (05444) 22135, serg_mischenko@mail.ru

Ключевые слова: конопля, селекция, гибрид, потомство, продуктивность, изменчивость.

Гибридизация самоопыльенных линий среднерусского и южного эколого-географического типа с последующим селекционным отбором – эффективный метод создания исходного материала ненаркотической конопли. Установлено, что от степени индивидуальной изменчивости количественных признаков (высоты растений, технической длины стебля, диаметра стебля, массы стебля, массы волокна, содержания волокна) конкретной семьи гибрида зависит результативность селекционных отборов.

Введение
Основными методами создания исходного материала в селекции конопли (Cannabis sativa L.) являются гибридизация (межсортовая, отдельная) и отбор (индивидуальный, семейственно-групповой, массовый). Эффективность селекционной работы значительно усиливается, если селекционер обосновано подбирает необходимые пары компонентов скрещивания и сочетает гибридизацию с последующим улучшающим отбором по прямым хозяйственно-ценным признакам [1].

В последнее время требования к гибридному материалу конопли на первых этапах селекции усилились, поскольку расширения, кроме заданных параметров продуктивности, должны содержать, по законодательству Украины, не выше 0,08% тетрагидроканнабинола (психотропное вещество), а в половой структуре должна отсутствовать посико однодомной конопли (дестабилизатор признака однодомности). В связи с этим в гибридизацию практически невозможно включать двудомные формы, давние селекционные сорта и местные края, что привело к сужению исходного селекционного материала конопли. Одним из направлений расширения его разнообразия становится использование самоопыльенных линий (как способ дифференциации популяции на генотипы с уникальным набором свойств в фенотипическом проявлении) с дальнейшей гибридизацией [2, 3]. При этом от степени индивидуальной изменчивости зависит эффективность отбора в каждом из последующих поколений, как было показано на примере сахарной свеклы и сои [4, 5].

Актуальным является проведение аналогичных исследований на конопле.

Таким образом, цель данной работы – установить особенности индивидуальной изменчивости количественных признаков линейных гибридов конопли F₁−F₃ средне-русского и южного эколого-географических типов при условии целенаправленного улучшающего отбора в гибридных популяциях.

Объекты и методы исследований
Исследования проводили на базе Опытной станции лубяных культур Института сельского хозяйства Северо-Востока НААН Украины (г. Глухов, Сумская обл.). Самоопыление растений современных сортов

Результаты исследований

Созданные реципрокные линейные гибриды конопли на основе самоопыленных линий сортов Глесия и Золотоношские 15 прежде всего характеризуются высокими показателями семенной продуктивности, содержания масла при обязательных усло-виях – полном отсутствии канабидиола, тетрагидроканабинола и канабинола (табл. 1), превалированием в половой структуре однодомной феминизированной материи, что обеспечивает стабильную однодомность.

Наряду с пригодностью использования этих гибридов в масличном направле-нии, при испытании они показали свою универсальность, а именно высокие показатели признаков, которые определяют структуру урожая волокна, что заслуживает детально-го изучения. Высота растений вместе с мас-сой стеблей – детерминанты формирования урожая стеблей (биомассы) и волокна. От технической длины зависит выход более качественного длинного волокна. Диаметр стебля – селекционный признак, который учитывается при отборе злых растений при селекции на качество волокна и повы-шение продуктивности, в т.ч. и биомассы. От массы волокна и его содержания в стеблях напрямую зависит урожай или выход волок-на. Индивидуальная изменчивость этих количественных признаков реципрокных ги-бридов линейных скрещиваний при целена-правленном индивидуальном отборе среди гибридного потомства может быть разной.

Коэффициент вариации меньше 10% считается низким, между 10 и 20% – сред-ним, больше 20% – высоким [9]. Исходя из

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Поколение</th>
<th>Масса семян с растения, г</th>
<th>Содержание масла, %</th>
<th>Количество растений с отсутствием канабиноидов, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Гляна, стандарт</td>
<td>–</td>
<td>6,2</td>
<td>32,0</td>
<td>97,5</td>
</tr>
<tr>
<td>Гибрид Глесия x Золотоношские 15</td>
<td>F₁</td>
<td>6,2</td>
<td>34,4</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>F₂</td>
<td>5,6</td>
<td>–</td>
<td>98,3</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>–</td>
<td>33,3</td>
<td>100,0</td>
</tr>
<tr>
<td>Гибрид Золотоношские 15 х Глесия</td>
<td>F₁</td>
<td>12,1</td>
<td>37,0</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>F₂</td>
<td>6,2</td>
<td>–</td>
<td>100,0</td>
</tr>
<tr>
<td></td>
<td>F₃</td>
<td>–</td>
<td>33,4</td>
<td>100,0</td>
</tr>
</tbody>
</table>
Таблица 2

Изменчивость количественных признаков волокнистости линейных гибридов конопли F₁ (числитель) и F₂ (знаменатель), 2014 г.

<table>
<thead>
<tr>
<th>Признак</th>
<th>Статистический показатель</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Гибрид Глесия х Золотоношские 15</td>
</tr>
<tr>
<td></td>
<td>Генетический материал</td>
</tr>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Высота растения, см</td>
<td>239,2 ± 2,62</td>
</tr>
<tr>
<td>Техническая длина стебля, см</td>
<td>192,3 ± 5,13</td>
</tr>
<tr>
<td>Диаметр стебля, мм</td>
<td>8,24 ± 0,289</td>
</tr>
<tr>
<td>Масса стебля, г</td>
<td>12,65 ± 0,998</td>
</tr>
<tr>
<td>Масса волокна, г</td>
<td>4,16 ± 0,343</td>
</tr>
<tr>
<td>Содержание волокна, %</td>
<td>32,84 ± 0,552</td>
</tr>
<tr>
<td></td>
<td>Гибрид Глесия х Золотоношские 15</td>
</tr>
<tr>
<td>Высота растения, см</td>
<td>249,6 ± 3,88</td>
</tr>
<tr>
<td>Техническая длина стебля, см</td>
<td>196,6 ± 3,13</td>
</tr>
<tr>
<td>Диаметр стебля, мм</td>
<td>10,44 ± 0,404</td>
</tr>
<tr>
<td>Масса стебля, г</td>
<td>17,74 ± 1,295</td>
</tr>
<tr>
<td>Масса волокна, г</td>
<td>5,90 ± 0,397</td>
</tr>
<tr>
<td>Содержание волокна, %</td>
<td>33,92 ± 1,056</td>
</tr>
</tbody>
</table>
этом, низкой изменчивостью в основном характеризовались признаки высоты растений \(V = 4,9–8,7\% \) и содержания волокна \(V = 7,4–8,7\% \), средней изменчивостью в основном характеризовался признак технической длины стебля \(V = 11,2–12,9\% \) и исключительно во всех случаях признак диаметра стебля \(V = 15,7–19,8\% \). Высокая изменчивость присуща признакам массы стебля \(V = 30,5–38,0\% \) и массы волокна \(V = 30,1–39,4\% \). Низкие коэффициенты вариации определенных признаков свидетельствуют об их стабильности в \(F_2 \), а высокие — о значительных возможностях отбора и наступлении стабилизации данных признаков в более поздних генерациях (табл. 2).

Высота растений в \(F_1 \), Глесия х Золотоношеские 15 составляла \(239,2 \pm 2,62 \) см, а в \(F_2 \) при целенаправленном селекционном отборе произошел ее незначительный рост до \(246,0 \pm 4,79 \) см. Аналогично при обратном скрещивании значение признака возросло с \(249,6 \pm 3,88 \) до \(253,8 \pm 6,75 \) см. Во втором поколении наблюдалось увеличение размаха между максимальным и минимальным значением признака, моды, медианы, средневквадратического стандартного отклонения (следовательно, и дисперсии), коэффициента вариации, что свидетельствует о наличии расщепления по данному признаку в потомстве. По сравнению с теоретическим, эмпирическое распределение значений высоты характеризовалось незначительной правосторонней асимметрией, которая осталась неизменной в \(F_2 \) первого варианта скрещивания \((A = 0,2) \) и уменьшилась в \(F_2 \) второго варианта скрещивания \((A = 0,7 \text{ и } A = 0,3 \text{ соответственно}) \), и отрицательным эксцессом, который был более выражен у гибрида Глесия х Золотоношеские 15 \((E = 0,8 \text{ в } F_1, \text{ и } E = 0,7 \text{ в } F_2) \).

Техническая длина стебля также во втором поколении незначительно увеличилась с \(192,3 \pm 5,13 \) до \(208,4 \pm 5,24 \) и с \(196,6 \pm 3,13 \) до \(202,5 \pm 5,83 \) см соответственно. Если у гибрида Глесия х Золотоношеские 15 кривая эмпирического распределения имела левостороннюю асимметрию с повышением её до \(0,9 \) в \(F_2 \) и отрицательный эксцесс с четкой стабилизацией признака в \(F_2 \) \((E = 1,9) \), то у гибрида Золотоношеские 15 х Глесия левосторонняя асимметрия \((A = 0,8) \) в \(F_2 \) стала правосторонней \((A = 0,3) \), эксцесс — отрицательным \((E = 1,0 \text{ и } E = -0,8 \text{ соответственно}) \), а коэффициент вариации вырос и составил 12,9%. Таким образом, характер изменчивости одного и того же количественного признака в рекуперационных гибридах разный. Признаки диаметра стебля, массы стебля и массы волокна гибрида \(F_2 \), где материнской формой были самоопыленные линии сорта Глесия, а родительской формой служили самоопыленные линии сорта Золотоношеские 15, несколько повысились по сравнению с \(F_1 \). При этом коэффициенты асимметрии и эксцесса в основном уменьшились, а коэффициенты вариации и мода с медианой повысились. Данные признаки у гибрида обратного скрещивания во втором поколении имели меньшие показатели. При этом коэффициент вариации диаметра стебля и массы стебля снизился, а массы волокна — повысился. Кривая эмпирического распределения признака массы стебля в первом поколении была правосторонней \((A = 0,8) \). Во втором поколении вариационный ряд приближался к кривой теоретического (нормального) распределения \((A = 0,0) \), однако наблюдался провал в его центре \((E = -1,4) \), что свидетельствует о расщеплении, т.е. разграничении особей на растения с более низкой и более высокой массой стебля. Следует отметить, что гибрид Золотоношеские 15 х Глесия более продуктивный по массе стебля и массе волокна, по сравнению с первым описанным. Так, его масса стебля составляла \(17,74 \pm 1,295 \) и \(16,32 \pm 1,114 \) г, в сравнении с \(12,65 \pm 0,998 \) и \(13,46 \pm 1,145 \) г, а масса волокна — \(5,90 \pm 0,397 \) и \(5,47 \pm 0,396 \) г, в сравнении с \(4,16 \pm 0,343 \) и \(4,92 \pm 0,433 \) г.

Содержание волокна в \(F_1 \), Глесия х Золотоношеские 15 выросло на 3,59% и составило \(36,43 \pm 0,607\% \) при наивысшем значении показателя 41,6%, что является достаточно позитивным для дальнейшей селекции данного исходного материала. Асимметрия изменилась с левосторонней на правостороннюю, а значение эксцесса изменилось с \(-0,5 \) до \(-1,1 \). В \(F_2 \) Золотоношеские 15 х Глесия существенного снижения содержания волокна не наблюдалось. Коэффициент вариации изменился с 13,9 на 8,7%, асимметрия с левосторонней стала правосторонней, а эксцесс с
положительного стал слабо отрицательным.
В целом следует отметить, что линейный гибрид Глесия х Золотоношские 15 менее продуктивный, но лучше поддается индивидуальному отбору в гибридных поколениях. Гибрид Золотоношские 15 х Глесия более продуктивный, однако менее поддается отбору, незначительно снижая показатели основных селекционных признаков волокнистости, и характеризуется во втором поколении всегда отрицательным экскессом, что свидетельствует о расщеплении количественных признаков. Селекционную работу с последним целесообразно проводить более длительное время.

Продемонстрируем особенности изменения соответствия эмпирического распределения значений теоретическому от первого до третьего поколения при улучшающем индивидуальном отборе на примере признака высоты растений (рис. 1, 2). Графическая интерпретация вариационных рядов признака гибрида F_1 Глесия х Золотоношские 15 показывает, что характер изменчивости и распределения значений может отличаться в зависимости от севы (потомства отдельно взятого гибридного растения). В F_1 кривая может быть с правосторонней или левосторонней асимметрией, пикиком или провалом в центре (рис. 1).
Рис. 2 – Соответствие эмпирического (столбцы) и теоретического (линия) распределения частот значения признака высоты растений линейного гибрида конопли Золотоношские 15 х Глесия (2013–2015 гг.)

В F₁ асимметрия и эксцесс становятся менее выраженными, а в F₂ асимметрия становится левосторонней, т.е. происходит повышение частот в классах с более высокими значениями признака.

Графическая интерпретация вариационных рядов признака высоты гибрида F₁ Золотоношские 15 х Глесия показывает, что характер изменчивости и распределения значений также может отличаться в зависимости от семьи. В F₁ кривая может быть с правосторонней или левосторонней асимметрией, но с отрицательным эксцессом – провалом в центре (рис. 2).

В F₂ асимметрия становится слабо выраженной, но отрицательный эксцесс остается, т.е. происходит последовательное расщепление данного признака со слабо выраженной стабилизацией (гомозиготацией в широком смысле).

Несмотря на отдельные исключения, закономерным является то, что коэффициенты асимметрии признака высоты растений положительные (не больше 1), а эксцесса – отрицательные (до -2). В пределах отдельных семей эти статистические показатели значительно отличаются (рис. 3).

Таким образом, от степени индивиду-
альной изменчивости количественных признаков конкретной семьи гибрида и выявления ее особенностей зависит результативность селекционных отборов.

Выводы

Гибридизация самоопыленных линий с последующим селекционным отбором — эффективный метод создания исходного материала ненаркотической конопли масличного, волокнистого и универсального направления использования. От степени индивидуальной изменчивости количественных признаков конкретной семьи гибрида зависит результативность селекционных отборов. Линейный гибрид Глесия х Золотоношские 15 менее продуктивный, но лучше поддается индивидуальному отбору в гибридных поколениях. Гибрид Золотоношские 15 х Глесия более продуктивный, однако менее поддается отбору, незначительно снижая показатели основных селекционных признаков волокнистости, и характеризуется во втором поколении всегда отрицательным эксцессом, что свидетельствует о расщеплении количественных признаков.

Библиографический список

Рис. 3 — Значение коэффициентов асимметрии и эксцесса признака высоты растений в различных семьях линейных гибридов конопли (2013–2015 гг.). 1–7 — F₂, 8–10 — F₃, 11–F₃
Глесия х Золотоношские 15; 12–14 — F₂, 15 — F₂, 16 — F₃ Золотоношские 15 х Глесия