БИОТЕХНОЛОГИЧЕСКИЕ ПРИЕМЫ ПОВЫШЕНИЯ РЕПРОДУКТИВНЫХ СПОСОБНОСТЕЙ СВИНОМАТОК В УСЛОВИЯХ ПРОМЫШЛЕННОЙ ТЕХНОЛОГИИ ПРОИЗВОДСТВА СВИНИНЫ

Корниенко Алексей Викторович, кандидат сельскохозяйственных наук, доцент, докторант кафедры «Кормление и разведение животных»
Ульяновская государственная академия

Ульяновск, д. Бородинский, 1; тел. (8422) 44-30-58,
e-mail: kormlen@yandex.ru

Ключевые слова: свиноматка, поросёнок, пробиотик, пребиотик, Проваген, Бацелл, Коркетрон, Биокоркетрон-форте, живая масса, воспроизводство.

Введение
Исследования последних лет показывают, что в условиях промышленной технологии свиноводства наиболее перспективны пробиотические и пребиотические добавки, которые в значительной степени вытесняют традиционные и небезопасные для организма препараты (антибиотики, транквилизаторы, детоксиканты, адаптогены и другие). Их применение обеспечивает альтернативу традиционной практике использования антибиотиков, повышает адаптивную способность к действию стресс-факторов, сопряжённых с промышленной технологией производства свинины (гипоксия, ранний отъём поросят от свиноматок, перегруппировки, транспортировка, производственный шум и другие), и обусловливает максимальное повышение уровня реализации генетического потенциала репродуктивной способности свиноматок [1]. В связи с этим позитивным резервом повышения производительности вида является использование пробиотических препаратов, содержащих различные штаммы микроорганизмов, обладающих антагонистическими свойствами к вредной микрофлоре, способствующих развитию полезной микрофлоры на фоне разных по составу комбикормов, оказывающих положительное влияние на интенсификацию обменных процессов в организме свиней и их собственную продуктивность [2, 3].

Наряду с пробиотиками в последнее время в животноводстве применяют пребиотики, к которым относят препараты немикробного происхождения, способные оказывать позитивный эффект на организм хозяина через селективную стимуляцию роста или активность нормальной микрофлоры кишечника. Полагают, что при рациональной комбинации пробиотик и пребиотик возможен максимальный позитивный эффект [4, 5]. Пребиотиками являются олигосахариды, например, фруктоолигосахариды, активно стимулирующие рост бифидобактерий [6]. Исследования по изучению пребиотиков и пробиотиков проводятся с целью оценки их влияния на процесс пищеварения, микрофлору кишечника, а также на рост производства продуктов животного происхождения [7].

Научно-технический прогресс в животноводстве предопределяет появление новых средств или разновидностей существующих, которые требуют научного обоснования относительно их практического применения. К числу последних можно отнести отечественные пробиотические кормовые добавки «Проваген», «Бацелл», крем-
ийсодержащие пробиотический препарат «Коретрон» и пре-пробиотик «Биокоретрон-форте».

Кормовая добавка «Програн» содержит лиофильно высушеннуую биомассу бактерий Bacillus subtilis BKM В-2287 и Bacillus licheniformis BKM В-2414 в равном соотношении, общим биологическим свойством которых является антигистицическая активность по отношению к условно-патогенной микрофлоре кишечника животных и продукция ферментов. «Програн» оптимизирует микробный баланс в кишечнике за счет восстановления нормофлоры, способствуя повышению неспецифической резистентности организма животных, увеличению сохранности и роста. В 1 г пробиотика содержится не менее 1х10⁷ КОЕ живых спорообразующих бактерий.

Ферментно-пробиотическая добавка «Бацелл» состоит из микрообской массы спорообразующих бактерий Bacillus subtilis 945 (B-5225), ацидофильных бактерий Lactobacillus acidophilus L917 (B-4625), Ruminococcus albus 37 (B-4292), штота подсолнечного. В 1 г добавки содержится не менее 1х10⁶ КОЕ бактерий каждого вида.

В Ульяновской области аккредитованной «Испытательной лабораторией качества биологических объектов, кормления сельскохозяйственных животных и птицы» Ульяновской ГСХА совместно с группой компании «Диамикс» (ООО «Диатомовый комбинат, г. Инза) на основе природного минерала диатомит разработаны кремнийсодержащие добавки «Коретрон» [8] и «Биокоретрон-форте» [9]. Указанные кормовые добавки обладают не только сорбционными свойствами (из-за большой нанопористости), но из-за содержания в своем составе (в доступной форме) кремния (до 75-88%), глюминии, железа, калия, натрия, кальция, магния, бария, титана и др. и могут использоваться в рационах животных в качестве источников минеральных веществ. Кроме того, биологическое действие «Биокоретрон-форте» обусловливается воздействием включенных в его состав биологически активных веществ (витаминов, хелатированных микроэлементов и бактерий пробиотической направленности), а добавка «Коретрон», помимо наличия в своем составе минеральных веществ, обладает пробиотическими свойствами.

Несмотря на очевидную теоретическую и практическую обоснованность и целесообразность использования выше названных кормовых добавок в рационах свиней, эффективность их применения в кормлении свиноматок в условиях промышленной технологии производства свины, в целях более полной реализации генетично-сского потенциала их продуктивности, до настоящих исследований, в Средненволожском регионе не изучалась.

Объекты и методы исследований

С этой целью в свиноводческом комплексе ООО «СКИК Новомалькинский» Новомалькинскского района Ульяновской области было проведено 5 опытов, в каждом из которых по принципу аналогов было сформировано две группы свиноматок (по 8 голов в каждой) после плодовитового их осеменения. Все животные каждого опыта находились в одинаковых условиях содержания и получали рационы, составленные согласно дегазированым нормам [10], с учётом химического состава местных кормов. Кормили свиноматок всех групп в каждом опыте одинаково. Различие в их кормлении заключалось лишь в том, что в дополнение к рациону каждая свиноматка опытной группы ежесуточно получала: в опыте № 1 - пробиотическую добавку «Програн» из расчёта 210-220 г на 1 т комбикорма, в опыте № 2 - 4,2 г ферментно-пробиотический препарат «Бацелл» (перорально), в опыте № 3 - 30 г пробиотика «Коретрон», в опыте № 4 - 30 г пре-пробиотика «Биокоретрон-форте» и в опыте № 5 - 30 г адсорбирующей пре-биотической минеральной добавки «Коретрон» в сочетании с пробиотиком «Програн» из расчёта 210-220 г на 1 т комбикорма. Контрольные группы животных препаратов не получали (табл. 1).

Учёт показателей изменения живой массы поросот, свиноматок, их воспроизводительных способностей проводили по общепринятым в зоотехнии методикам.

Результаты исследований

Включение в рационы свиноматок в суровосный и подсосный периоды пробиотических препаратов «Програн» и «Бацелл», пре-пробиотических кремнёсидеражающих добавок «Коретрон» и «Биокоретрон-форте», а также пробиотика «Програн» в сочетании с адсорбирующей пробиотической минеральной добавкой «Коретрон» оказали неоднозначное влияние на состояние микробиоценоза сармливаемого ком-
Схема опытов

<table>
<thead>
<tr>
<th>Группа</th>
<th>Условия кормления, в сутки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Опыт №1</td>
<td></td>
</tr>
<tr>
<td>I-K</td>
<td>Основной рацион (ОР) OP+ пробиотик «Програн» из расчёта 210-220 г на 1 т комбикорма</td>
</tr>
<tr>
<td>II - O</td>
<td></td>
</tr>
<tr>
<td>Опыт №2</td>
<td></td>
</tr>
<tr>
<td>I-K</td>
<td>Основной рацион (ОР) OP+ферментно-пробиотический препарат «Бацелл» 4,2 г/гол</td>
</tr>
<tr>
<td>II - O</td>
<td></td>
</tr>
<tr>
<td>Опыт №3</td>
<td></td>
</tr>
<tr>
<td>I-K</td>
<td>Основной рацион (ОР) OP+ пребиотик «Коретрон» 30 г/гол</td>
</tr>
<tr>
<td>II - O</td>
<td></td>
</tr>
<tr>
<td>Опыт №4</td>
<td></td>
</tr>
<tr>
<td>I-K</td>
<td>Основной рацион (ОР) OP+ пребиотик «Биокоретрон-форте» 30 г/гол</td>
</tr>
<tr>
<td>II - O</td>
<td></td>
</tr>
<tr>
<td>Опыт №5</td>
<td></td>
</tr>
<tr>
<td>I-K</td>
<td>Основной рацион (ОР) OP+ пребиотик «Коретрон» 30 г/гол+ пробиотик «Програн» из расчёта 210-220 г на 1 т комбикорма</td>
</tr>
<tr>
<td>II - O</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: К — контрольная и О— опытная группа.

В таблице приведены основные характеристики, касающиеся опыта по изучению влияния пробиотика на живую массу свинок. В таблице представлены данные по пяти группам: I-K и II-O для каждого опыта. Основным рационом служил ОР, в который добавлялись пробиотики в разных концентрациях.

На начало опыта живая масса свиноматок сравниваемых групп в каждом опыте была относительно одинаковой. Однако в последний период супоросности четко просматривался закономерность увеличения живой массы у свиноматок опытных групп по отношению к контрольным. За 100 суток супоросности среднестатистический прирост, характеризующий уровень ассимиляционных процессов в организме свиноматок, потреблявших пробиотик «Програн», составил 422,5 г, что на 19,42% больше, чем у контрольных животных (353,8 г), однако на 1,75% меньше, чем у свиноматок, потреблявших ферментно-пробиотическую добавку «Бацелл». Среднестатистический прирост свиноматок, потреблявших комбикорм, обогащённый пребиотической кремнийсодержащей добавкой «Коретрон», составил 391,3 г, что на 10,6% больше, чем у контрольных аналогов. При введении в рацион свиноматок добавки «Биокоретрон-форте» их среднестатистические приросты были на 15,88 % (410,0 г) больше, чем у контрольных маток. У свиноматок опытной группы опыта №5, потреблявших кормовую добавку «Коретрон» в сочетании с пробиотиком «Програн», указанный показатель составил 436,3 г, что на 23,32 % больше, чем в контрольной группе.

Большей живой массы у свиноматок опытных групп была и на 5 день их лактации. Известно, что за время лактации происходит снижение живой массы свиноматок, что связано с продукцией молока. Величина снижения живой массы зависит от запасов питательных веществ в организме матери, количества поросенка. За период лактации у свиноматок контрольных групп, имеющих в помете 10,63 поросенка, были заметно большие потери живой массы («сдавивание с тела»), чем у свиноматок опытных групп, имеющих в помете больше поросенка (11,37...13,62 голов). При этом наименьшие потери живой массы за этот период лактации были у свиноматок, потреблявших пробиотик «Програн» в сочетании с пребиотической кормовой добавкой «Коретрон» (опыт №5). По отношению к контрольным свиноматкам у них потери живой массы при большей плодовитости были на 3,13 кг (на 22,35%) меньше. У свиноматок опытных групп, потреблявших кормовые добавки «Програн», «Бацелл», «Коретрон» и «Биокоретрон-форте» и имеющих в помете на 7,01...22,30% больше поросенок, чем контрольные свиноматки, потеря живой массы за этот период лактации составила 12,62 (P<0,01), 11,50 (P<0,001), 12,37 (P<0,01) и 12,75 (P<0,05) кг соответственно, что на 9,85; 17,86; 11,64
Таблица 2

Динамика живой массы свиноматок в супоросный и подсосный периоды

<table>
<thead>
<tr>
<th>Группа</th>
<th>Живая масса, кг</th>
<th>Показатель</th>
<th>Прирост за 100 суток</th>
<th>Потери живой массы</th>
<th>Изменение прироста живой массы за производственный цикл, кг</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>при постановке</td>
<td>на 100 сутки</td>
<td>на 5 день лактации</td>
<td>абсолютный, кг</td>
<td>среднесуточный, г</td>
</tr>
<tr>
<td>I-K</td>
<td>208,62 ±2,10</td>
<td>244,00 ±2,46</td>
<td>225,62 ±1,87</td>
<td>211,62 ±0,60</td>
<td>35,38 ±1,18</td>
</tr>
<tr>
<td>II-O</td>
<td>208,12 ±3,04</td>
<td>250,37 ±2,71</td>
<td>229,12 ±2,45</td>
<td>216,50 ±1,21**</td>
<td>42,25 ±0,68</td>
</tr>
</tbody>
</table>

Опыт №1

<table>
<thead>
<tr>
<th>Опыт №2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-K</td>
</tr>
<tr>
<td>II-O</td>
</tr>
</tbody>
</table>

Опыт №3

<table>
<thead>
<tr>
<th>Опыт №4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-K</td>
</tr>
<tr>
<td>II-O</td>
</tr>
</tbody>
</table>

Опыт №5

<table>
<thead>
<tr>
<th>Опыт №5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-K</td>
</tr>
<tr>
<td>II-O</td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01; ***p<0.001

и 8,93% меньше, чем у контрольных свиноматок, что можно объяснить большим резервированием питательных веществ в их организме в период супоросности и лучшей экономичностью обмена веществ.

Следовательно, включение в рацион свиноматок пробиотических препаратов «Проваген» и «Бацелл», пре-пробиотических кремнийсодержащих добавок «Коретрон» и «Биокоретрон-форте», а также пробиотика «Проваген» в сочетании с адсорбирующей пребиотической минеральной добавкой «Коретрон» способствует повышению полноценности кормления, улучшает ассимилиционные процессы в их организме, что соответственно приводит к большему резервированию в супоросный период питательных веществ в их организме и в то же время обеспечивает значительно меньшие потери живой массы за наиболее напряженный период их лактации. При этом наиболее выражено эти изменения наблюдались при обогащении комбикорма пробиотическим препаратом «Проваген» в сочетании с пребиотической минеральной добавкой «Коретрон».

Полноценное кормление свиноматок в сочетании с хорошим содержанием оказывает существенное влияние не только на нормальное течение их супоросности и благополучные опоросы, но и получение крепких и жизнеспособных поросят.

У свиноматок опытных групп №№ 1, 2, 3, 4 опыта получено на 17; 19; 6 и 15 голов, или на
Таблица 3

<table>
<thead>
<tr>
<th>Группа</th>
<th>Показатель</th>
<th>Кол-во поросят в помёте, гол</th>
<th>Крупноплодность, кг</th>
<th>Масса гнезда поросят при рождении, кг</th>
<th>Живая масса поросенка в 28 дн. возрасте, кг</th>
<th>Кол-во поросят в 28 дн. возрасте, гол</th>
<th>Сохранность поросят, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Все</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Опыт 1</td>
<td></td>
<td>12,50 ±0,42</td>
<td>10,63 ±0,38</td>
<td>1,13 ±0,02</td>
<td>12,05 ±0,50</td>
<td>40,38 ±2,60</td>
<td>4,142 ±0,02</td>
</tr>
<tr>
<td>II-O</td>
<td></td>
<td>14,25 ±0,73***</td>
<td>12,75 ±0,58**</td>
<td>1,21 ±0,02*</td>
<td>15,39 ±0,74**</td>
<td>61,70 ±2,05***</td>
<td>4,936 ±0,04***</td>
</tr>
<tr>
<td>Опыт 2</td>
<td></td>
<td>12,50 ±0,42</td>
<td>10,63 ±0,38</td>
<td>1,13 ±0,02</td>
<td>12,05 ±0,50</td>
<td>40,38 ±2,60</td>
<td>4,142 ±0,02</td>
</tr>
<tr>
<td>II-O</td>
<td></td>
<td>14,50 ±0,73*</td>
<td>13,00 ±0,35***</td>
<td>1,24 ±0,02***</td>
<td>16,05 ±0,83***</td>
<td>60,70 ±3,49***</td>
<td>4,856 ±0,03***</td>
</tr>
<tr>
<td>Опыт 3</td>
<td></td>
<td>12,50 ±0,42</td>
<td>10,63 ±0,38</td>
<td>1,13 ±0,02</td>
<td>12,05 ±0,50</td>
<td>40,38 ±2,60</td>
<td>4,142 ±0,02</td>
</tr>
<tr>
<td>II-O</td>
<td></td>
<td>12,75 ±0,31</td>
<td>11,37 ±0,80</td>
<td>1,17 ±0,02</td>
<td>13,31 ±0,44</td>
<td>51,37 ±2,95**</td>
<td>4,698 ±0,06**</td>
</tr>
<tr>
<td>Опыт 4</td>
<td></td>
<td>12,50 ±0,42</td>
<td>10,63 ±0,38</td>
<td>1,13 ±0,02</td>
<td>12,05 ±0,50</td>
<td>40,38 ±2,60</td>
<td>4,142 ±0,02</td>
</tr>
<tr>
<td>II-O</td>
<td></td>
<td>12,75 ±0,49***</td>
<td>12,50 ±0,38**</td>
<td>1,21 ±0,02**</td>
<td>15,13 ±0,63**</td>
<td>59,24 ±3,15**</td>
<td>4,936 ±0,05**</td>
</tr>
<tr>
<td>Опыт 5</td>
<td></td>
<td>12,50 ±0,42</td>
<td>10,63 ±0,38</td>
<td>1,13 ±0,02</td>
<td>12,05 ±0,50</td>
<td>40,38 ±2,60</td>
<td>4,142 ±0,02</td>
</tr>
<tr>
<td>II-O</td>
<td></td>
<td>14,63 ±0,87*</td>
<td>13,62 ±0,68**</td>
<td>1,23 ±0,01***</td>
<td>16,78 ±0,48***</td>
<td>69,00 ±3,50**</td>
<td>5,257 ±0,03***</td>
</tr>
</tbody>
</table>

*p<0,05; **p<0,01; ***p<0,001

20,00; 22,35; 7,06; 17,64 %, больше живых поросят. При этом самый высокий показатель рождаемости живых поросят выявлен у свиноматок опытной группы опыта №5, потреблявших комбикорм, обогащенный пробиотиком «Проваген» в сочетании с кремнекислотой обратно «Коретрон» (на 28,23% больше, чем в контрольной группе). В целом по всем опытам показатель мертворождаемости поросят у свиноматок опытных групп составил от 2 до11 голов, что в 7,50...1,25 раза меньше, чем в контрольных группах. Крупноплодность у свиноматок, потреблявших с кормом комплекс биодобавок, была достоверно больше (1,17...1,23 кг), чем у аналогов контрольных групп (1,13 кг).

Интенсивность роста и сохранность поросят в подсосный период, особенно в первую неделю жизни, в значительной мере зависит от молочной продуктивности свиноматок. Нами был определен биохимический состав сухоточного объема молозива и молока свиноматок и установлено, что у свиноматок разных групп содержание веществ в молозиве было различным. Так, доля сухих веществ в молозиве свиноматок опытных групп превышала контрольных в опыте №1 на 5,06%, в опыте №2 на 7,98, в опыте №3 на 3,26, в опыте № 4 на 5,81 и в опыте №5 на 7,58%. Содержание органических веществ: белка соответственно на 5,46; 10,41; 4,90; 6,02; 9,94, жира соответственно на 6,72; 7,42; 1,96; 8,40; 6,58% и молочного сахара соответственно на 2,35; 2,82; 1,18; 2,12; 3,06%. За счет более высоко- го содержания белка, жира и лактозы валовая энергия в суточном объеме молозива свиноматок опытных групп была больше, чем у аналогов контрольных групп. Эти результаты свидетельствуют о повышении полноценности молозива свиноматок опытных групп под воздействием пробиотических и пребиотических препаратов вследствие улучшения обменных процессов в их организме. Такие же различия отмечаются и в химическом составе молока, однако, в отличие от молозива, в молоке свиноматок сравниваемых групп меньше содержалось сухого вещества за счет двукратного

P-0,05; **p-0,01; ***p-0,001
уменьшения содержания в нём белка, а содержание жира и лактозы было на том же уровне, как и содержание их в молозиве.

Что касается аккумуляции витамина А в печени новорожденных поросят и поросят-отъёмшей, то его содержание в печени поросят от опытных групп свиноматок было соответственно больше на 21,10%; 25,30; 10,80; 23,28 и 22,80% у новорожденных поросят и на 19,64%; 21,66; 13,37; 21,10 и 20,25% соответственно у поросят-отъёмышей в сравнении с поросятами от контрольных групп свиноматок. Это объясняется лучшей его трансформацией в витамин А, обусловленной потреблением свиноматками комбикорма, обогащенного биодобавками.

К моменту отъема поросят (28 дней) их сохранность в контрольных группах свиноматок составила 91,72%, а в опытной группе опыта №1 – 98,04, опыта №2 – 96,15, опыта №3 – 95,60, опыта №4– 96,00% и опыта №5– 96,33%, т.е. отход был в 1,11…1,34 раза, или на 11,59…34,67%, меньше.

При этом масса 1 поросенка при отъеме у свиноматок опытных групп составила 4,698…5,257 кг, что больше на 0,556…1,115 кг, или на 13,42…26,92%, а количество сохранившихся поросят на одну свиноматку на 11,54…34,61% больше, чем в контрольных группах (P<0,05-0,001).

Ввиду этого масса гнезда поросят в возрасте 28 дней у свиноматок опытных групп достоверно (P<0,01-0,001) превосходила контрольных соответственно на 52,80%; 50,32; 27,22; 46,71 и 70,88%, что свидетельствует о лучшем развитии, активном поедании подкормки поросятами этих групп и более высокой молочности свиноматок. При этом заметно большей была масса гнезда поросят свиноматок, получавших с комбикорном пробиотик «Проваген» с кремнийсодержащей добавкой «Коретрон».

Полученные результаты воспроизводительных показателей свиноматок позволяют утверждать, что включение в их рацион пробиотических препаратов «Проваген» и «Бацелл», пре-пробиотических кремнийсодержащих добавок «Коретрон» и «Биокоретрон-фортэ», а также пробиотика «Проваген» в сочетании с аскорбиновой кислоты минеральной добавкой «Коретрон», улучшая микробиоценоз пищеварительного тракта и понижая токсикологическую нагрузку на организм, усиливают в нем ассимиляционные процессы, что проявляется в увеличении их живой массы в период супоросности и уменьшении потерь её в период лактации, оказывает положительное влияние на эмбриональный и постэмбриональный рост, развитие и сохранность приплода.

Выводы

Санация комбикорма рационов свиноматок в период супоросности и лактации пробиотическими препаратами «Проваген» и «Бацелл», кремнийсодержащими пре-пробиотическими кормовыми добавками «Коретрон» и «Биокоретрон-фортэ», а также пробиотиком «Проваген» в комбинации с аскорбиновой кислоты минеральной добавкой «Коретрон» способствует повышению полноценности их кормления и активизации обменных процессов, что, соответственно, приводит к большему резервированию в супоросный период питательных веществ в их организме и в то же время обеспечивает значительному меньше потери их живой массы за наиболее напряженный период их лактации, положительно влияет на эмбриональный и постэмбриональный рост, развитие и сохранность приплода. Это обусловлено не только повышением полноценности кормления, но и снижением токсикологической нагрузки на организм животных за счет подавления нежелательной микрофлоры в кормах и желудочно-кишечном тракте, более интенсивно протекающими асимилиационными процессами в период супоросности и лучшей экономичностью использования питательных веществ в период лактации. При этом наиболее выражено эти изменения наблюдались при обогащении комбикорма рациона пробиотиком «Проваген» в сочетании с аскорбиновой кислоты минеральной добавкой «Коретрон», применение которых в рационах супоросных и подсосных свиноматок способствует улучшению факторов естественной резистентности как важнейшего биоресурсного потенциала свиноматок, определяющего уровень их продуктивности и жизнеспособность приплода.

Библиографический список

4. Ерсанова, О.Е. Препараты «Коретрон»
Keywords: sows, piglets, probiotic, prebiotic, Provagen, Bacell, Korettron, Biokorettron, forti, life weight, reproduction.

The authors studied and scientifically proved the utility of using biologically active additives of new generation, such as, probiotic «Provagen», enzyme - probiotic compound «Bacell», pre-probiotic «Biokorettron forti» and probiotic «Provagen» in combination with absorbent mineral supplement «Korettron» in rations of sows in case of commercial pork production technology. Their application contributes to the full value of sow's feeding and activation of metabolic processes, it also enhances adaptive abilities to stress-factors, which consequently leads to greater nutrient allocation in gestation period. Moreover, their application provides a much smaller loss of life weight during the most intensive lactation period and has a positive effect on fetal and postnatal growth, development and preservation of the litter. It is determined not only by the increase of the feeding full value, but also by reduction of toxicological stress on animal organism by suppressing adverse microflora in feeds and the gastrointestinal tract, which is characterized by more intensive assimilation processes occurring during their pregnancy and a better efficiency of nutrient use during lactation period.

Bibliography